//! STM32F4DISCOVERY demo application //! //! This demo application sports a serial command-interface for controlling what the LED //! ring does: cycle clock-wise, counter clock-wise, or follow the accelerometer. #![deny(unsafe_code)] #![no_main] #![no_std] use core::fmt::Write; use cortex_m_semihosting::hprintln; use hal::{ block, gpio::{Alternate, Edge, ExtiPin, Floating, Input, Output, PushPull, AF5}, prelude::*, serial::{self, config::Config as SerialConfig, Serial}, spi::{Mode, Phase, Polarity, Spi}, stm32::{EXTI, SPI1, USART2}, }; use heapless::{consts::U8, Vec}; #[cfg(not(test))] use panic_semihosting as _; use rtfm::app; use stm32f4disc_demo::led_ring::LedRing; type Accelerometer = hal::spi::Spi; type AccelerometerCs = hal::gpio::gpioe::PE3>; type Led = hal::gpio::gpiod::PD>; type SerialTx = hal::serial::Tx; type SerialRx = hal::serial::Rx; type Spi1Sck = hal::gpio::gpioa::PA5>; type Spi1Miso = hal::gpio::gpioa::PA6>; type Spi1Mosi = hal::gpio::gpioa::PA7>; type UserButton = hal::gpio::gpioa::PA0>; /// The number of cycles between LED ring updates (used by tasks). const PERIOD: u32 = 8_000_000; #[app(device = hal::stm32)] const APP: () = { static mut ACCEL: Accelerometer = (); static mut ACCEL_CS: AccelerometerCs = (); static mut BUFFER: Vec = (); static mut BUTTON: UserButton = (); static mut EXTI_CNTR: EXTI = (); static mut LED_RING: LedRing = (); static mut SERIAL_RX: SerialRx = (); static mut SERIAL_TX: SerialTx = (); /// Initializes the application by setting up the LED ring, user button, serial /// interface and accelerometer. #[init(spawn = [accel_leds, cycle_leds])] fn init() -> init::LateResources { // Set up the LED ring and spawn the task corresponding to the mode. let gpiod = device.GPIOD.split(); let leds = [ gpiod.pd12.into_push_pull_output().downgrade(), gpiod.pd13.into_push_pull_output().downgrade(), gpiod.pd14.into_push_pull_output().downgrade(), gpiod.pd15.into_push_pull_output().downgrade(), ]; let led_ring = LedRing::from(leds); if led_ring.is_mode_cycle() { spawn.cycle_leds().unwrap(); } else if led_ring.is_mode_accel() { spawn.accel_leds().unwrap(); } // Set up the EXTI0 interrupt for the user button. let mut exti_cntr = device.EXTI; let gpioa = device.GPIOA.split(); let mut button = gpioa.pa0.into_floating_input(); button.enable_interrupt(&mut exti_cntr); button.trigger_on_edge(&mut exti_cntr, Edge::RISING); // Set up the serial interface and the USART2 interrupt. let tx = gpioa.pa2.into_alternate_af7(); let rx = gpioa.pa3.into_alternate_af7(); let config = SerialConfig::default().baudrate(115_200.bps()); let rcc = device.RCC.constrain(); let clocks = rcc.cfgr.freeze(); let mut serial = Serial::usart2(device.USART2, (tx, rx), config, clocks).unwrap(); serial.listen(serial::Event::Rxne); let (mut serial_tx, serial_rx) = serial.split(); // Set up the serial interface command buffer. let buffer = Vec::new(); // Set up the accelerometer. let sck = gpioa.pa5.into_alternate_af5(); let miso = gpioa.pa6.into_alternate_af5(); let mosi = gpioa.pa7.into_alternate_af5(); let mode = Mode { polarity: Polarity::IdleHigh, phase: Phase::CaptureOnSecondTransition, }; let mut accel = Spi::spi1(device.SPI1, (sck, miso, mosi), mode, 100.hz(), clocks); let gpioe = device.GPIOE.split(); let mut accel_cs = gpioe.pe3.into_push_pull_output(); // Initialize the accelerometer. accel_cs.set_low(); let _ = accel.transfer(&mut [0x20, 0b01000111]).unwrap(); accel_cs.set_high(); // Output to the serial interface that initialisation is finished. writeln!(serial_tx, "init\r").unwrap(); init::LateResources { ACCEL: accel, ACCEL_CS: accel_cs, BUFFER: buffer, BUTTON: button, EXTI_CNTR: exti_cntr, LED_RING: led_ring, SERIAL_RX: serial_rx, SERIAL_TX: serial_tx, } } /// Task that advances the LED ring one step and schedules the next trigger (if enabled). #[task(schedule = [cycle_leds], resources = [LED_RING])] fn cycle_leds() { resources.LED_RING.lock(|led_ring| { if led_ring.is_mode_cycle() { led_ring.advance(); schedule.cycle_leds(scheduled + PERIOD.cycles()).unwrap(); } }); } /// Task that performs an accelerometers measurement and adjusts the LED ring accordingly /// and schedules the next trigger (if enabled). #[task(schedule = [accel_leds], resources = [ACCEL, ACCEL_CS, LED_RING, SERIAL_TX])] fn accel_leds() { resources.ACCEL_CS.set_low(); let read_command = (1 << 7) | (1 << 6) | 0x29; let mut commands = [read_command, 0x0, 0x0, 0x0]; let result = resources.ACCEL.transfer(&mut commands[..]).unwrap(); let acc_x = result[1] as i8; let acc_y = result[3] as i8; resources.ACCEL_CS.set_high(); if acc_x == 0 && acc_y == 0 { resources .SERIAL_TX .lock(|serial_tx| writeln!(serial_tx, "level\r").unwrap()); } resources.LED_RING.lock(|led_ring| { if led_ring.is_mode_accel() { let directions = [acc_y < 0, acc_x < 0, acc_y > 0, acc_x > 0]; led_ring.specific_on(directions); schedule.accel_leds(scheduled + PERIOD.cycles()).unwrap(); } }) } /// Interrupt handler that writes that the button is pressed to the serial interface /// and reverses the LED ring cycle direction. #[interrupt(binds = EXTI0, resources = [BUTTON, EXTI_CNTR, LED_RING, SERIAL_TX])] fn button_pressed() { resources.LED_RING.lock(|led_ring| led_ring.reverse()); // Write the fact that the button has been pressed to the serial port. resources .SERIAL_TX .lock(|serial_tx| writeln!(serial_tx, "button\r").unwrap()); resources .BUTTON .clear_interrupt_pending_bit(resources.EXTI_CNTR); } /// Interrupt handler that reads data from the serial connection and handles commands /// once an appropriate command is in the buffer. #[interrupt( binds = USART2, priority = 2, resources = [BUFFER, LED_RING, SERIAL_RX, SERIAL_TX], spawn = [accel_leds, cycle_leds] )] fn handle_serial() { let buffer = resources.BUFFER; // Read a byte from the serial port and write it back. let byte = resources.SERIAL_RX.read().unwrap(); block!(resources.SERIAL_TX.write(byte)).unwrap(); //hprintln!("serial: {}", byte).unwrap(); // Handle the command in the buffer for newline or backspace, otherwise append to the // buffer. if byte == b'\r' { block!(resources.SERIAL_TX.write(b'\n')).unwrap(); match &buffer[..] { b"flip" => { resources.LED_RING.reverse(); } b"stop" => { resources.LED_RING.disable(); } b"cycle" => { resources.LED_RING.enable_cycle(); spawn.cycle_leds().unwrap(); } b"accel" => { resources.LED_RING.enable_accel(); spawn.accel_leds().unwrap(); } b"off" => { resources.LED_RING.disable(); resources.LED_RING.all_off(); } b"on" => { resources.LED_RING.disable(); resources.LED_RING.all_on(); } _ => { writeln!(resources.SERIAL_TX, "?\r").unwrap(); } } buffer.clear(); } else if byte == 0x7F { buffer.pop(); block!(resources.SERIAL_TX.write(b'\r')).unwrap(); for byte in buffer { block!(resources.SERIAL_TX.write(*byte)).unwrap(); } } else { if buffer.push(byte).is_err() { hprintln!("Serial read buffer full!").unwrap(); } } //hprintln!("buffer: {:?}", buffer).unwrap(); } extern "C" { fn TIM2(); fn TIM3(); } };